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Abstract

Sapphire is one of the main candidate materials to be used in the dielectric halo-
scope of the MADMAX(MAgnetized Disk and Mirror Axion eXperiment) project. The
perpendicular component of its dielectric properties have been investigated in the fre-
quency range 10-40 GHz at room temperature (295-297 K) and at 18 K in a dry cryostat
using a microwave resonator. Detailed analysis of the measurements are reported and
similar measurements and theoretical models from the literature are discussed. MAD-
MAX is to search for the axion which is a cold dark matter candidate. In the haloscope,
multiple dielectric disks are placed in a row parallel to each other to enhance the theo-
rized microwave signal that is generated at the interfaces in the presence of a magnetic
field. For the MADMAX project knowing the dielectric properties of the disk materials
is crucial since it affects the enhancement factor.
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1 Introduction

The axion is a new kind of hypothetical particle suggested by Peccei and Quinn[1].
It is a promising candidate for cold dark matter (DM[2]), which is the missing matter in
the universe. In addition, it provides a possible solution to why there is an absence of
strong charge-parity violating effects in quantum chromodynamics (QCD)[3]. It is such
an important particle that a large number of experiments have been proposed or carried
out trying to prove its existence, among which is MADMAX[4]. Theoretically, axions
are bosons with a low mass smaller than 1 meV. In the scenario where the PQ symmetry
breaking happened after inflation, a value of mass around 100 µeV is predicted.

1.1 Working principle of MADMAX

The possibility to detect axions is based on the predicted weak interaction of the
axion with photons. This will add a new interaction term in the Lagrangian of the
electromagnetic field[5]:

Lint = −gaγ
4

FµνF̃
µνa (1.1)

Where gaγ is the coupling constant, Fµν is the field strength for electromagnetic field,
F̃µν = 1

2ε
αβµνFαβ with ε0123 = 1, and a is the axion field. After applying the Euler-

Lagrange equation to the whole Lagrangian, one gets the modified Maxwell’s equations.
In the presence of a strong homogeneous external magnetic field, the axion induced
electric field is:

Ea(t) = −
gaγBe

ϵ
a(t) (1.2)

Where Be is the homogeneous external magnetic field. Existence of this field means that
in the presence of a discontinuity of the permittivity of the medium, an electromagnetic
field must be generated in order to satisfy the continuity of the fields. However, the
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Figure 1.1: A sketch for the dielectric haloscope[5].

energy density of this induced electromagnetic field is so small that it is beyond the
range that we can detect, so many methods have been proposed to solve this problem
among which is a setup called dielectric haloscope.

Dielectric haloscopes are mainly composed of multiple disks made of dielectric ma-
terials. The disks are parallel to each other and arranged in a line parallel to the ground
with the centres of all the surfaces of the disks on the line. A mirror is placed on one side
in order to reflect back the electromagnetic signal and a receiver is put on the other side
to receive the signal(figure 1.1). When we introduce a homogeneous external magnetic
field parallel to surfaces of disks, according to (1.2), an electric field parallel to surfaces
will be induced by the axion field. Axions are deemed to be non-relativistic particles on
the Earth. The velocity is thought to be around 10−3 and the de Brogile wavelength is
about 12.4 m, which means that we can consider the axion field to be a homogeneous
field over scales smaller than this value. Consequently, for axions of a certain mass ma,
the axion field can be described in natural unit as:

a(t) = a0e
imat (1.3)
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Figure 1.2: Discontinuity caused by difference in permittivity at the boundary

According to (1.2), if the external magnetic field and the axion field are fixed, the
induced electric field is only dependent on the permittivity ϵ. As a result, if we put a
boundary surface separating two regions of different ϵ, the axion-induced electric field
will not be continuous any more at the boundary (See Figure 1.2). From the modified
Maxwell’s equations we know that the parallel components of E and H at the boundary
must be continuous so there must be extra electromagnetic waves compensating for the
discontinuity. These waves are radiated out from the boundary and propagate in the
perpendicular direction out of the surface. Multiple dielectric layers in the haloscope
create many different regions so that there are many waves emitted from, reflected or
transmitted through these interfaces. By selecting thickness of the disks and adjusting
the distance between them properly, these coherent waves can be amplified by construc-
tive interference and resonance and be detectable.

To summarize, the ubiquitous axion field is expected to induce electromagnetic
waves at the interface of two different media in a strong homogeneous magnetic field.
Then the dielectric haloscope composed of many such interfaces amplifies these coherent
waves by constructive interference among them and then the induced signal can be
detected.
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1.2 Why MADMAX needs dielectric properties of sap-
phire

There are two basic requirements for the dielectric disks in the haloscope. One is
having high permittivity, in other words, high dielectric constant because the higher
the dielectric constant is, the more noticeable the discontinuity is. The other is having
low loss for electromagnetic waves since we do not want the wave to dissipate so much
before it reaches the receiver. There are currently two candidate materials satisfying
these demands. One is lanthanum aluminate (LaAlO3) with a dielectric constant about
24 and loss tangent less than 10−6 at cryogenic temperatures. The other is sapphire
(α−Al2O3).

The frequency ν of the induced electromagnetic wave depends on the mass of axions:

ν =
mac

2

h
(1.4)

Where h is the Planck constant and c is the speed of light in vacuum. MADMAX focuses
on the axion mass range 40-400 µeV corresponding to electromagnetic wave frequency
range 9.7-97 GHz. Since the dielectric properties are temperature and frequency depen-
dent, here we concentrate on the range 10-40 GHz. The boost factor of the dielectric
haloscope is affected by the dielectric properties of the disk material. For example, in
the work by Knirck[6], the ratio of boost factor with a loss angle δ to that without loss
is given by

β2
δ

β2
0

=
1

4N2

∣∣∣∣∣1− exp[−Nδ|n|ωd]
1− exp[− δ

2 |n|ωd]

∣∣∣∣∣
2

(1.5)

Where βδ and β0 are boost factors with and without loss, N is the number of layers
in the dielectric haloscope, d is the thickness of each layer and n is the refractive index
of the disk material. In addition, figure 1.3 shows the relation between the reduction of
the power boost factor and tanδ. Thus, it is crucial to know the dielectric loss which
has an effect on the boost factor when designing the dielectric haloscope.

A number of experiments exist in literature reporting dielectric constant and loss
tangent of sapphire at different frequencies and temperatures. The principal experimen-
tal method is to use a cylinder microwave resonator with a cylinder sapphire sample
in it. The sapphire crystals are mostly cut so that the c axis is parallel to the cylin-
der axis to make sure the whole set up is cylindrically symmetric. Then a function
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Figure 1.3: Relations between the reduction of the power boost factor and tanδ for 20
disks at ∼ 18 GHz (left) and 80 disks at ∼ 22 GHz (right)[6]

between resonance frequency and dielectric constant can be established by applying
the radial mode matching method to the system[7, 8]. Resonance frequencies of the
system can be measured and used to calculate the dielectric constant. For loss tan-
gent, a formula can be also derived and some parameters in the formula need to be
calculated in a simulation software. These are discussed in details in the following
chapter. Hartnett, Tobar and Krupka[9] reported that parallel component of loss tan-
gent of sapphire tanδ∥ = (4.2 ± 1.0) × 10−7f (1.09±0.09) and perpendicular component
tanδ⊥ = (1.3± 0.2)× 10−6f (0.84±0.05) where f is resonance frequency in GHz, at 296 K
and in the frequency range 7-16 GHz. In another work by Krupka[10], perpendicular
component of dielectric constant, ϵ⊥, is measured to be 9.27 at 15 K and 9.4 at 298 K
at 21 GHz and parallel component one ϵ∥ to be 11.34 and 11.59 respectively. tanδ⊥ and
tanδ∥ are reported to be around 10−8 at 19 K and 10−5 at 298 K respectively.

In this thesis, the perpendicular components of sapphire dielectric properties have
been studied at room temperatures, 295-297 K, and at 18 K. The thesis is structured
as follows: In chapter 2, the concepts of the dielectric constant and loss tangent are
reviewed and formulas needed for the measurement are presented. In chapter 3, detailed
procedures of the experiment are reported. Results of those experiments are presented
in chapter 4 and data from other literature are also cited there. Theoretical model for
dielectric properties and discussions and analyses of the results are given in chapter 5.
Finally in chapter 6, a paragraph of the conclusion is presented.
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2 Theoretical Background of the
Experiment

In this chapter, the basic concepts of dielectric constant and loss tangent are briefly
reviewed. Then a formula for the loss tangent is derived for sapphire together with the
measurement strategy of the surface resistance.

2.1 Definition of dielectric constant and loss tangent

Every material is electromagnetically characterized by its permittivity ϵ(F/m) mag-
netic permeability µ(H/m), and electrical conductivity σ(S/m). In a medium, the be-
haviour and propagation of electromagnetic wave are governed by Maxwell’s equations
and constitutive equations relating these properties to fields. The constitutive equations
in a linear, homogeneous and isotropic material is given as:

D = ϵE (2.1)

B = µH (2.2)

J = σE (2.3)

where the dielectric displacement field D(C/m2) is related to the electric field E(V/m)
by permittivity, the magnetic induction B(Wb/m2) is related to the magnetic field
H(A/m) by the magnetic permeability and the current density J(A/m2) is related to
the electric field by the conductivity.

Equation (2.1) can also be written as

D = ϵ0E + P (2.4)
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where P is defined as the dipole moment per unit volume, which is related to the
electric field as

P = ϵ0χeE (2.5)

where ϵ0 is the permittivity of vacuum and χe is the electric susceptibility. Then electric
displacement field D is:

D = ϵ0(1 + χe)E (2.6)

Relative permittivity or dielectric constant is defined as (1 + χe) and we denote it as
ϵ′. For a linear material, the dipole moment induced by an external electric field E
is proportional to E. If the electric properties of a material are independent of the
direction of the external field, the material is isotropic. In an anisotropic material, the
polarization induced by an external electric field in one direction is different from that
induced in another direction. In this case, the electric susceptibility is a rank=2 tensor
and so is the dielectric constant.

Now we take a look at Maxwell’s curl equation in source-free medium for H in
phasor form:

∇× H = jωD + J (2.7)

According to (2.5), the definition of dielectric constant and equation (2.3), we can rewrite
(2.7) as:

∇× H = jωϵ0(ϵ
′ − j

σ

ωϵ0
)E (2.8)

We also have
∇× E = −jωµH (2.9)

We take a curl on both side of equation (2.9) and insert equation (2.8) and we get

∇× (∇× E) = ω2µϵ0(ϵ
′ − j

σ

ωϵ0
)E (2.10)

together with
∇ · E = 0 (2.11)

we finally have:
∇2E + ω2µϵ0(ϵ

′ − j
σ

ωϵ0
)E = 0 (2.12)

We can extract the complex wave number or complex propagation constant k as

k2 = ωµ(ωϵ− jσ) (2.13)
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In general, ϵ, µ and σ are complex quantities. If we neglect the magnetic properties and
introduce imaginary parts ϵ′′ and σ′′, we need to rewrite k as

k2 = ωµ[(ωϵ′ + σ′′)− j(ωϵ′′ + σ′)] (2.14)

The loss tangent is then defined as

tanδ =
ωϵ′′ + σ

ωϵ′ + σ′′ (2.15)

The real and imaginary parts of ϵ and σ have different physical meaning. However, in
the dielectric measurements, we can not make distinctions between σ′ and ϵ′′ or between
ϵ′ and σ′′[11]. We can also see in equation (2.14) that we can regard ϵ′+σ′′/ω as ϵ′ and
ϵ′′ + σ′/ω as ϵ′′. Therefore, the most common form of tanδ is written as:

tanδ =
ϵ′′

ϵ′
(2.16)

With the assumption ϵ′′ ≪ ϵ′, we take ϵ as purely real and use ϵ = ϵ′ instead of ϵr
in this work. Note also that ϵ in general is dependent on frequency and temperature.

2.2 Derivation of formula of the loss tangent

The dielectric constant of the sapphire is a rank-2 tensor because it is not isotropic.
If we set a rectangular coordinate system with z axis parallel to the c axis of the sapphire
crystal (see figure 2.1), the dielectric constant tensor ϵ can be written as:

ϵ =


ϵ⊥ 0 0

0 ϵ⊥ 0

0 0 ϵ∥

 (2.17)
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Figure 2.1: The crystal structure of sapphire[12].

In the experiment, we use a cylinder resonator containing a cylinder sapphire sample
and we work in the cylinder coordinate system with the z axis and symmetric axis of
resonator to be the same. We measure resonance frequencies f , which depends on both
ϵ⊥ and ϵ∥. However, for resonant modes for which the z component of electric field is
small compared to the other components (quasi-TE mode), the effect of ϵ∥ on resonance
frequencies can be safely neglected. We use a simulation software called COMSOL to
find the modes we have in the experiment. We adjust the value of ϵ⊥ until the resonance
frequency is exactly the same as what we measure.

The measurement of the loss tangent depends on the quality factor Q. The quality
factor is defined as 2π multiplied by the ratio of total energy stored in the system to
the loss of energy per cycle:

Q = 2π
U

(Wd +Wc)T
(2.18)

where U is the total stored energy, T is the period, Wd is power loss of dielectric material,
sapphire in this case, and Wc is power loss of the conductor wall. Notice T = 1/f and
2πf = ω, so we rewrite (2.18) as:

Q =
ωU

Wd +Wc
(2.19)

Assuming we have only the sapphire sample in the resonator, the total energy stored U

in the system is given as:

U =
ϵ0
2
(

∫
Vvac

|E|2dV +

∫
Vsamp

E∗ϵEdV ) (2.20)
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where E∗ is the complex conjugate of E, Vvac stands for the volume of region not
occupied in the resonator and Vsamp for volume occupied by the sapphire sample. We
replace ϵ in (2.20) with (2.17) and get:

U =
ϵ0
2
(

∫
Vvac

|E|2dV +

∫
Vsamp

(ϵ⊥|E⊥|2 + ϵ∥|E∥|2)dV ) (2.21)

where E⊥ and E∥ are the electric field components perpendicular and parallel to z axis
respectively:

|E⊥|2 = |Er|2 + |Eϕ|2 (2.22)

|E∥|2 = |Ez|2 (2.23)

The dielectric loss power is:

Wd =
ωϵ0
2

∫
Vsamp

(ϵ′′⊥|E⊥|2 + ϵ′′∥|E|2∥)dV (2.24)

where ϵ′′⊥ and ϵ′′∥ are perpendicular and parallel component of the imaginary part of the
complex dielectric constant. The power loss because of the conductor wall is:

Wc =
1

2
Rs

∫
S
|Ht|2dS (2.25)

where Rs is surface resistance of the wall, Ht is the component of H tangent to the
wall and S stands for the all the surfaces of the wall. Since at resonance, the energy of
magnetic field is equal to that of electric field, we can also write U as:

U =
µ0

2

∫
V
|H|2dV (2.26)

The reciprocal of Q can be expressed as:

1

Q
=

Wd

ωU
+

Wc

ωU
(2.27)

We define:
U⊥
samp =

ϵ0
2

∫
Vsamp

ϵ⊥|E⊥|2dV (2.28)

U∥
samp =

ϵ0
2

∫
Vsamp

ϵ∥|E∥|2dV (2.29)

Uvac =
ϵ0
2

∫
Vvac

|E|2dV (2.30)

and notice that:
tanδ⊥ =

ϵ′′⊥
ϵ⊥

(2.31)
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tanδ∥ =
ϵ′′∥

ϵ∥
(2.32)

Plugging these into (2.27) we get:

1

Q
=

U⊥
samp

U
tanδ⊥ +

U
∥
samp

U
tanδ∥ +Rs

∫
S |Ht|2dS

µ0ω
∫
V |H|2dV

(2.33)

We define the electric filling factors as:

P⊥
samp =

U⊥
samp

U
(2.34)

P ∥
samp =

U
∥
samp

U
(2.35)

G =
µ0ω

∫
V |H|2dV∫

S |Ht|2dS
(2.36)

G is the geometric factor. Then (2.33) can be expressed as:

1

Q
= P⊥

samptanδ⊥ + P ∥
samptanδ∥ +

Rs

G
(2.37)

We can see that the quantity Psamp = P⊥
samp + P

∥
samp is the ratio of the energy stored

in the sample to the total energy. Notice that we have neglected the loss caused by
air and water vapor in the whole deriving process. Details about it will be discussed
later. In (2.37), all of the parameters are frequency dependent which means under a
certain resonance frequency, we have one equation and two unknowns tanδ⊥ and tanδ∥.
However, by selecting a mode for which P

∥
samp is small compared to P⊥

samp, in other
words, Ez is small (quasi TE mode), we can neglect P

∥
samp term and get:

tanδ⊥ =
1

P⊥
samp

(
1

Q
− Rs

G
) (2.38)

In addition, the real experiment include not only the sapphire sample in the resonator
but also other materials whose dielectric properties are known. In this case, we just
need to add extra terms in (2.37). More details will be discussed later.

In (2.37), Q can be acquired by experiment while P⊥
samp, P

∥
samp and G are calculated

using COMSOL simulation. The only remaining parameter is the surface resistance of
conductor walls. This can be acquired by doing an experiment with the empty resonator.
For the empty resonator analytical solutions are obtained by applying Maxwell’s equa-
tions. For example, for TE011 mode, Q is related to Rs as[13]:
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Q =
Z0

2Rs

(
4χ2

01
D2 + π2

L2 )
3
2

8χ2
01

D3 + 2π2

L3

(2.39)

where Z0 is the wave impedance in free space with a value of 377 Ω. χ01 is the first zero
of the derivative of the first-kind Bessel function. The strategy is that we measure the
quality factor for a certain mode and then use (2.39) to get Rs. Since there is nothing
in an empty resonator, there is no energy contained in the sample indicating P⊥

samp and
P

∥
samp are all zero. Thus equation (2.37) gives:

1

Q
=

Rs

G
(2.40)

This is equivalent to equation (2.39). G can be calculated analytically using (2.39)
or using COMSOL. In the work by Breeze[13], a square root rule is stated for surface
resistance that RS ∝

√
f . Thus we can measure the surface resistance at one frequency

point and at room temperature then we know it at any other frequencies. Experiments
have been carried out to test this rule and the results are shown in chapter 4.
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3 Experimental Setup and
Measurements

In this chapter, we introduce the methods for the measurement of ϵ⊥ and tanδ⊥and
mode identification. Various pictures of experimental setup and materials are also
shown.

3.1 Dielectric measurements at room temperature

We use a cylinder resonator and a vector network analyser to get the resonance
frequencies and unloaded quality factors for different modes. We start with the empty
resonator to determine the surface resistance as described in the previous section and
then we do measurements with the samples.

Figure 3.1 and figure 3.2 are the schematic and the photos of the resonator setup
respectively. The resonator is made out of brass coated with silver. The inner part of
the resonator is a hallow cylinder. There are two small channels connecting the inside
and outside of the resonator located on the side wall of the resonator and opposite to
each other, through which coupling cables are inserted. At the ends of the cables are
two loops used to excite resonant modes. When the surfaces of loops are parallel to
the bottom surface, hybrid mode with Hz component are excited. By adjusting the
rotation of the semi-rigid high frequency cables, different modes can be excited. In
order to keep the field mainly constrained in the sample and away from conductor walls
of the resonator, we use a cylinder quartz to support the sample.
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Figure 3.1: A schematic for the resonator (not-to-scale). (a) Top plate of the resonator;
(b) the sapphire sample; (c) the quartz support; (d) the PTFE rod used to fix the
sapphire sample; (e) a thin sheet metal spring; (f) the PTFE rod used to fix the quartz;
(g) semi-rigid high frequency coupling cable to guide microwave and excite resonant
modes

Figure 3.2: Real pictures for the resonator. (a) The cable ; (b) the PTFE rod used
to fix the support at the bottom; (c) loops at the end of the cable to excite resonance
modes; (d) the gear able to be rotated to adjust the distance between the loop and the
symmetric axis of the resonator;
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The quartz support is a hollow cylinder. To fix the quartz, we use a PTFE (short
for polytetrafluoroethylene) rod as shown in figure 3.1. We need to put the cylinder
sample also at the centre. In order to achieve this, a paper note with a certain width is
cut with the help of vernier caliper.

Figure 3.3: Photos of the quartz

After the sample is placed, this paper note is used to check if the distance between
the edge of the samples and the wall of the resonator is equal to the width of the paper
note at 8 different positions as shown in figure 3.4. This method centers the sample.
Notice that one side of the paper should be closely attached to the wall of the resonator
and the surface of paper should be through the center.
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Figure 3.4: Top view of the schematic of the resonator set up. The paper note is
inserted at 8 check positions.

In order to fix the sample, we use another PTFE rod inserted from the top. After
we close the resonator, a thin sheet of metal spring is used on the PTFE to stabilize
it in place (Figure 3.5). Outside the resonator, there are two gear knobs. By rotating
these we can adjust the distance between loops.
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Figure 3.5: Photos of the top plate of the resonator. (a) The plate; (b) the PTFE
rod used to fix the sample; (c) the thin sheet metal spring used to exert a force on the
PTFE rod.

Six samples of sapphire have been used in the experiment. Three of them have a
radius about 12 mm and height about 3 mm and the other three have a radius about
8 mm and height about 4 mm. The method of measuring the dimensions is presented
later in section 3.6 and more precise dimensions are shown in section 4.1. In figure 3.6
a photo of one of these samples is shown. Samples are all of cylinder shape and have
got a precise c axis cut (the upper and lower surfaces are perpendicular to the crystal
c-axis). The cut precision of 8 mm samples are reported as 3◦.

Figure 3.6: A photo of one of the sapphire samples
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Figure 3.7: A two-port network

Another critical equipment used in the experiment is a vector network analyzer
(VNA). A VNA can send microwave signal of different frequencies to a network and
then receive the transmitted and reflected one to calculate the S parameters. The model
number of the VNA is N5224B and produced by company Keysight. Its frequency range
is 10 MHz-43.5 GHz. It has two ports connected to the semi-rigid high frequency cable.
The resonator can be regarded as a two-port network as shown in figure 3.7 and the
VNA measures the S parameters (S11, S22 and S21) of it. The S parameters are shown
on the screen of the VNA in dB in frequency domain. S parameters describes the
transmission and reflection of microwave power. If a1 and a2 stand for the power going
into the network through port 1 and port 2 and b1 and b2 stand for the power leaving
the network through port 1 and port 2, then the relationship between them and S
parameters is given by

[
b1

b2

]
=

[
S11 S12

S21 S22

][
a1

a2

]
(3.1)

If ai=0, we have

Sjj =
bj
aj

, (j = 1, 2) (3.2)

Sij =
bi
aj

, (j = 1, 2; i = 1, 2; j ̸= i) (3.3)

From equation (3.2) and (3.3), we can see that If we connect port j to a source and
port i to a matching load, Sjj and Sij are equal to the reflection coefficient at port j
and transmission coefficient from port j to port i respectively.
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Figure 3.8: An example measurement on one resonant frequency of the resonator

Figure 3.8 shows an example measurement where S21(brown), S11(blue curved line)
and S22(magenta curved line) are presented. S21 cone is Lorentzian. In addition, VNA
also gives the -3 dB bandwidth ∆f and displays the loaded quality factor QL of this
mode by formula:

QL =
f

∆f
(3.4)

We can see dips at the resonance point at S11 and S22 curves shown in figure 3.8.
These dip values are denoted by S11,0 and S22,0 and used to calculate the coupling
coefficients. The larger the coupling coefficients are, the larger the S21 is. We denote
the coupling coefficient of port one and two as β1 and β2 respectively and then Q is
given by[13]:

Q = (1 + β1 + β2)QL (3.5)

Where β1 and β2 are coupling coefficients and given by
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β1 =
1− S11,0

S11,0 + S22,0
(3.6)

β2 =
1− S22,0

S11,0 + S22,0
(3.7)

When doing measurement, we can set the frequency span shown on the screen,
which we normally set 2.5-5 times as large as the bandwidth. We can also set how
many points on one curve that VNA collect. The default number of points collected
on one curve is 201, which is generally enough for the measurement. In addition, the
number of average at each sample frequency is also an important parameter and a
number of 16 is usually set to stabilize the measurement. We also need to lower S21

curve below -50 dB to achieve a weak coupling because if the coupling is too strong, the
field configuration can be disturbed. But also it should not be too weak, or the noise
would be non-negligible. By rotating the gears outside the resonator we can control
coupling coefficients: The closer the loops are to the center, the larger the coupling
coefficients are, or in other words, the larger the dips are. We want the dips to be equal
to keep the symmetry of the whole setup. Finally, it is also worth to pay attention
to the IF (intermediate frequency) Bandwidth. IF bandwidth is the bandwidth of the
IF filter in the VNA. After the signal is received by the VNA, it is mixed with the
signal generated by the local oscillator in a mixer and converted to the IF signal. Small
bandwidth of IF filter means small portion of the signal is analysed each time. Therefore
the smaller IF Bandwidth is, the more precise the measurement is and the more stable
the curve is, though the longer it takes to finish the scan. IF Bandwidth should be
much smaller than Lorentzian bandwidth. The typical value used is 5-10 kHz.

After setting everything properly, we can save the data as an s2p file and the
screen as a png file. An s2p file records the frequency, the real and imaginary parts
of all S parameters. Then the file is uploaded on a website called ARPE developed
by Krkotic, Gallardo, Tagdulang, Pont and M. O’Callaghan. This website can extract
unloaded and loaded quality factors, resonance frequencies and coupling coefficients
from the S parameters in an s2p file and make plots (Figure 3.9). We briefly introduce
the algorithm here and detailed information can be found in the paper[14]. First the
algorithm recovers the asymmetries by repositioning S21 values in the complex plane to
its theoretical position using

S′
i = Si −

S1 + Sn

2
(3.8)

http://www.arpe.upc.edu/
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where Si are measured values on VNA and S′
i are corresponding repositioned values. An

initial coarse estimate of resonance frequency f0 is made. Then the following equation,
derived from circuit analysis of a lumped-element resonator, is used to fit the S′

i

S′
i =

K

1 + 2jQL(δi − δe) +G
(3.9)

where K and G are complex fitting parameters, QL and δe are real fitting parameters
and QL is the loaded quality factor. δi is given by

δi =
1

2
(
fi
f0

− f0
fi
) (3.10)

Equation (3.9) is rewritten as:

F + 2jQLGδi − 2jQLS
′
i(δi − δe) = S′

i (3.11)

This equation can be divided into real and imaginary parts and be written as a group
of linear equations. There are 2n equations with 6 unknowns so these equations are
overdetermined, which are solved using the Moore-Penrose inverse routines, which are
better suited to perform the least-squares approximation. In addition, the algorithm
also performs the removal of the outlier points by

ϵi = | 1

S′
i −G

− K

1 + 2jQL(δi − δe)
|−1 (3.12)

The largest value of ϵi is compared to a threshold value

ϵmax <
1

Th|K|
(3.13)

where Th is a threshold value defined as 10. If there are points with values of ϵi larger
than (Th|K|)−1, these points are deleted and the algorithm is repeated until (3.13) is
valid.

For the extraction of S11,0 and S22,0, only data with |QL|δi ⩽ 0.5 are used. The
algorithm performs geometric least-squares fits of S11 and S22 in the complex plane and
find out the complex centers (Ci) and radii (ri). Then Sii,0(i = 1, 2) is given as

Sii,0 =
||Ci| − ri|
|Ci|+ ri

(3.14)

In addition, the algorithm gives the ratio of removed data to the total data, denoted by
percentage of data removed (PDR).
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Figure 3.9: Plots of the example measurement made by ARPE. The S parameters are
plotted in the frequency domain in the upper left plot. The other two plots show the
circle fits of S parameters in the complex plane.

After the unloaded quality factor and resonance frequency are acquired, we use
COMSOL to model the whole resonator setup, simulate the field configuration and find
out the proper values of ϵ⊥ and tanδ⊥. Since the whole resonator setup is radially
symmetric, we use a 2D cylindrically symmetric model as shown in figure 3.10 (i).

Figure 3.10: Screen shots from COMSOL. (i): The cross-section. (ii): Eϕ for TE01δ

mode
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COMSOL uses cylinder coordinate system and solves the following differential equa-
tions:

∇× µ−1
r (∇× E)− k20(ϵr −

jσ

ωϵ0
)E = 0 (3.15)

E(r, ϕ, z) = Ẽ(r, z)e−imϕ (3.16)

where k0 is the wave number in vacuum, m is called azimuthal number and µr, ϵr and
σ are relative permeability, dielectric constant and conductivity respectively and their
values are set by the user. Modes with m=0 are TE or TM modes while modes with
m>0 are hybrid modes. We set µr=1 and σ=0. We use the values from literature
for the dielectric properties of quartz[15] and PTFE[16]: ϵ⊥quartz = 4.44, tan⊥

quartz =

1.3 × 10−5, ϵPTFE = 2.03 and tanδPTFE = 2 × 10−4. For sapphire, we can input a
baseline value: ϵ⊥ = 9.36 and ϵ∥ = 11.593 at room temperature. After building the
model and inputting proper values for the materials, simulation can be started to find
out resonance frequencies and all the fields. COMSOL can give all of the possible modes
but generally we just need to find out modes whose frequencies are close to what we
get from VNA. Figure 3.10(ii) shows the simulation result of the example measurement.
Since this is a TE mode, the Ez is zero and the field is mainly constrained in the
sample. Thus dielectric properties of other materials and ϵ∥ have little effect on the
measurement. We change the value of ϵ⊥ until the resonance frequency is the same as
the measured one.

Next, we calculate tanδ⊥. Notice that we have not only the sapphire sample in the
resonator but also quartz and PTFE, so two new terms are added into (2.37):

1

Q
= P⊥

samptanδ⊥ + P ∥
samptanδ∥ + Pstanδs + Pptanδp +

Rs

G
(3.17)

Where Ps and Pp are energy filing factors for quartz and PTFE respectively and tanδs

and tanδp are loss tangents. We neglect P
∥
samptanδ∥ and get:

tanδ⊥ =
1

P⊥
samp

(
1

Q
− Pstanδs − Pptanδp −

Rs

G
) (3.18)

Since we know the field configuration, we can calculate all integral-related quantities.
COMSOL is able to calculate integral. The Rs is acquired from the empty resonator
measurement. Then tanδ⊥ is the only unknown value.

What follows next is only the repetition of the above for different eigenmodes.
First we find as many resonance modes as we can with VNA and extract the f and Q.
After that, identify the modes on COMSOL and extract ϵ⊥. Then calculate tanδ⊥ in
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COMSOL using (3.17). Finally f − ϵ⊥ and f − tanδ⊥ plots can be made, which are also
important for the measurement of the parallel components. The steps of measurement
of the parallel components are generally the same as perpendicular ones. One difference
is that we need the modes with large Ez. To achieve this, we rotate the small loops in
the resonator by 90 degree[13] to set it perpendicular to the bottom surface.

3.2 Cryogenic vacuum experiment

Since the MADMAX experiment will be conducted at a temperature around 4
K in vacuum to minimize the noise, it is important to perform the dielectric property
measurements at cryogenic temperature. A cryostat is utilized to meet the requirement.
A photo of the cryostat is shown in figure 3.11. The vacuum chamber is of radius of
78.55 mm and the round mounting cold plate fits the chamber. The resonator is placed
on the mounting cold plate of the cryostat using a copper structure in upright direction.
Temperature probes (Figure 3.12) are located on the mounting plate and on the copper
structure. A high frequency (2.92 mm/Type K, part #CF40-2-SMA50-40GHz) SMA
vacuum feed through on a flage CF40 from VACOM is used to connect the resonator to
the VNA through one of the ports of the cryostat.
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Figure 3.11: The cryostat. (a) Ports of the cryostat. (b)CF 100 access port
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Figure 3.12: A photo of the inner part of the cryostat. (a) Copper mount of the
resonator; (b) cold mounting plate; (c) temperature probes

3.3 Uncertainties

All measurements are inevitably accompanied by uncertainties. Generally, the re-
sults of measurement on ϵ⊥ is dependent on a series of independent parameters pi. In
this thesis, standard deviation σ is used to represent the uncertainty. Uncertainty of ϵ⊥
can be expressed as:

σϵ⊥ =

√√√√ n∑
i

(
∂ϵ⊥
∂pi

σpi)
2 (3.19)

where σpi is the uncertainty of the corresponding parameter. For ϵ⊥, these parameters
are the radius and height of the resonator (Rres and Hres), the radius and height of
samples (Rsamp and Hsamp) and the resonance frequency we get for a certain mode. For
tanδ⊥, these parameters are Q and Rs. In order to work out the uncertainties, multiple
measurements on each parameter have been conducted. Then an average value and
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standard deviation are acquired by:

x̄ =
x1 + x2 + · · ·+ xn

n
(3.20)

σx =

√∑
(xi − x̄)2

n− 1
(3.21)

where n is the number of measurements, xi is measurement value each time. For partial
derivative of ϵ⊥, each related parameters is scanned in the range [x̄ − σx, x̄ + σx] in
COMSOL and for each parameter value we repeat the process of simulation in section
3.2 so that we have an ϵ⊥-x plot and then a function fit can be made to get the partial
derivative at the average value. For partial derivatives of tanδ⊥, we use (3.17) and get:

∂tanδ⊥
∂Q

= − 1

P⊥
sampQ

2
(3.22)

∂tanδ⊥
∂Rs

=
1

P⊥
sampG

(3.23)

G and P⊥
samp can be got from COMSOL simulation and then we have everything needed

in (3.19)

3.4 Effect of air and square root rule test

When room temperature experiment is carried on, the dielectric properties of air
can be another cause of error. In equation (3.17) and the whole simulation process, we
suppose that the dielectric constant and loss tangent of air are 1 and 0 respectively.
Besides, water vapor could also have an effect on results. For dielectric constant of air,
a typical value of 1.00058986±0.0000005 is measured by Hector and Schultz[17].

For loss tangent of air, we use an atmospheric absorption model proposed by Wentz
and Meissner[18]. In their work, the relation between the absorption coefficient of dry
air αD and water vapor αV and frequency f has been studied. The frequency range
they investigate is 0-100 GHz. If we only focus on 10-40 GHz, αD increases gradually
from about 2× 10−6 m−1 to 1.3× 10−5 m−1 while αV goes up to a maximum of about
3.4 × 10−5 m−1 around 22 GHz and then drops to 1.5 × 10−5 m−1. According to the
definition of the absorption coefficient, we have:

α = 2|Im(k)| (3.24)
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where k is the wave number given as:

k = ω
√
µ0ϵ0ϵr(1 + itanδ) (3.25)

Generally, the loss tangent is much smaller than 1 so we have:
√
1 + itanδ ≈ 1 +

1

2
itanδ (3.26)

Notice that 1/
√
µ0ϵ0 = c, where c is the speed of light in vacuum. Now equation (3.24)

is written as:
tanδ =

αc

2πf
√
ϵr

(3.27)

With (3.27) we can estimate the loss tangents of air or water vapor. Both αD and αV

are smaller than 4× 10−5 m−1 in 10-40 GHz, so we set α = 4× 10−5 m−1 in (3.27) and
when f = 10 GHz, loss tangent is about 2× 10−7. Compared with the typical value of
tanδ⊥ ≈ 10−5, this effect can be neglected.

To estimate the effect caused by air, we also conduct an experiment. The cryostat
vacuum chamber is used at room temperature. Then we compare the results with those
acquired in the normal laboratory environment to see how much the effect of air and
water vapor is. In addition, an experiment is also carried out in nitrogen. Since the
nitrogen available is dry, we can observe the effect of water vapor alone.

A glove bag (AtmosBag from Sigma-Aldrich) shown in figure 3.13 is used for this
nitrogen experiment. The resonator is sealed in and connected to the VNA through the
glove bag inlets. We fill the bag with nitrogen and flush, and then repeat this process
three times to effectively reduce the air in the bag. The nitrogen experiments are carried
only for the empty resonator, whose results are compared to the aired ones to check if
there is any difference.

These experiments are done with the empty resonator at different resonance modes,
so we can also check by the way if the square root rule is valid under different environ-
ment. By looking at equation (3.17), if the G factor is large enough, the Rs

G term can
be neglected. Thus if we want to minimize the effect of Rs, we can use modes with high
G.
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Figure 3.13: The glove bag (AtmosBag from Sigma-Aldrich) used in the nitrogen
experiment. (a) the inner glove; (b) two ports

3.5 Mode identification

Multiple modes exist near a given frequency and in some cases they are so close that
a priority knowledge of possible epsilon range is not enough to identify the correct mode.
Luckily, simulations on COMSOL show that generally different modes have different
response to positioning of the sample. The increment or decrement in frequency per
100 µm between modes varies, which helps us identify the correct mode. In this way,
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errors caused by mode identification can be avoided.

Consequently, more paper notes are made to make sample deviate from the center
(Figure 3.14). These papers allow us to control the deviation distance from the center by
steps of 250 µm. In practice, it is hard to make accurate steps of 250 µm so only 500 µm

and 1 mm deviations are conducted in the resonator and on COMSOL and difference in
frequencies with and without deviation is recorded as ∆fcomsol/vna = fshifted−fcentered.
Notice that we cannot use a 2D model in COMSOL since the whole system is not
cylindrically symmetric anymore if we deviate samples from the center. However, it still
has one symmetric plane parallel to the direction of deviation and through the center.
Thus one-half 3D model is built in COMSOL for computational efficiency as shown in
figure 3.15. We input the values of dielectric properties of sapphire and deviate the
sample from the center by also 500 µm or 1mm to get ∆fcomsol. Then the same thing
can be done to get ∆fV NA and then we compare these two. If for a certain mode, these
two differences are close then to some extent we can say we have matched a proper
mode on COMSOL with that we have on VNA. If not, other modes on COMSOL need
to be considered.

Figure 3.14: Groups of paper notes with steps of 0.25 mm. The 6.01 mm one is used
to center the 12 mm samples and others are used to deviate the sample. For example,
the 6.26 mm and 5.76mm are used to shift the sample from center by 0.25 mm. The
arrows on paper indicate the right sides supposed to be inserted because the parallel
cut cannot be guaranteed
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Figure 3.15: One half of the 3D model in COMSOL

In addition, we can also achieve mode identification by comparing the difference
with and without the PTFE rod. First we do the normal measurement and we get a
resonance frequency f and then we remove the PTFE rod and do the same thing to get
the resonance frequency f ′. Then we calculate ∆fvna = f ′ − f . Similarly, we can also
get ∆fcomsol = f ′ − f in the simulation and again we compare ∆fvna with ∆fcomsol.
The advantage of this method is that it is much easier to operate on the resonator and a
3D model is no longer needed but since the PTFE rod is used to hold the sample at the
center, the removal of it is after any other operation on the resonator. Both methods
are employed to the mode identification in practice.

3.6 Measurement of dimensions

It is important to know the dimensions of materials and the resonator to build
an accurate model in COMSOL. A micrometer as shown in figure 3.16 is used for the
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measurement of the radius and the height of sapphire samples. The precision is 0.001
mm. First we do a measurement with nothing between the measuring faces. We rotate
the thimble and then rotate the ratchet knob when the two faces are very close. We
stop rotating rightly after the two faces touch each other and write down the reading
D0. Afterwards we measure the dimension of a sample and write down another reading
D. Then D −D0 is recorded as the result of the measurement.

Figure 3.16: The micrometer used in the lab

Figure 3.17 is the photos of another micrometer for inner radius measurements for
the resonator. The range is 20-25 mm and the precision is 0.005 mm. By rotating the
ratchet, we can control those three anvils at the bottom until they touches the inner
walls of the measured object. First we measure the diameter of the set ring shown in
figure 3.18 and write down the reading r0. Though the diameter of this set ring exceeds
the range by 13 µm at 293 K, the extra part can still be measured by reading the
thimble. If r0 is not equal to the diameter of the set ring, datum point setting needs to
be done. Then we measure the diameter of the resonator. Since our lab temperature is
usually 2-4 K higher than 293 K, an assumption is made that the change in diameter
of the set ring can be neglected.
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Figure 3.17: The micrometer for the inner radius measurement(left) and three anvils
at the bottom(right)

Figure 3.18: The set ring with a diameter 25 mm+13 µm at 293 K

We use a depth micrometer to measure the height of the inner space of the resonator.
Figure 3.19 shows photos of the depth diameter. There is a moving spindle in the
measuring face. We can control the length of the standing-out part of the spindle by
rotating the ratchet. The reading is shown on the screen, which has a precision of 0.001
mm. First, we let the micrometer stand on its measuring face on a hard clean flat and
rotate the ratchet until the spindle gently touches the surface. We press and hold the
’SET’ button to set the datum point. After that we can start the measurement.
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Figure 3.19: The depth micrometer(left) and the moving spindle at the bottom(right)

We measure each dimension 10-20 times and calculate the mean value and the one-
standard deviation according to equation (3.20) and (3.21) and record the temperatures.
In addition, all of the measuring surfaces and measured objects should be clean during
the measurement. Measured values of dimensions are shown in section 4.1. Finally,
we use the temperature dependence[19] of dimensions of the resonator and sapphire to
calculate dimensions of the resonator and samples at 18 K.
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4 Results

In this chapter, we show the results of the experiments mentioned in the previous
chapter. Various plots and tables are presented and data from other literature are also
cited to make a comparison.

4.1 Dimensions of sapphire samples and the resonator

Table 4.1 shows the dimensions of the sapphire samples and the resonator and
temperatures when doing measurement. The results of dimensions are presented as the
mean value plus and minus one standard deviation, which are calculated using equation
(3.20) and (3.21) in section 3.3. Here we name those three sapphire samples with a
diameter of 12 mm as sample 1,2 and 3 and the other three with a diameter of 8 mm
as sample 4, 5 and 6. The samples vary slightly in both diameter and height. Samples
of 8 mm group have a larger range for both dimensions compared with those of 12 mm
group. As for the resonator, the height varies larger than diameter. The measurement
temperature of the radius is 296.5 K and of the height is 295.3 K. The radii of PTFE rod
and quartz support are 1 mm and 2.48 mm respectively. The height of quartz is 3.98
mm and its inner radius is 0.503 mm. As we mentioned previously, the electromagnetic
field is mainly constrained in the sample, so the dimensions of PTFE rod and quartz
support have much less effect on the measurement results. Thus we do not take into
account their uncertainties in dimensions as what have been done for others.
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Item Diameter(mm) Height(mm) temperature(K)
sample 1 11.970±0.001 3.017±0.0015 296.9
sample 2 11.967±0.001 3.024±0.0005 296.5
sample 3 11.970±0.0015 3.027±0.001 296.5
sample 4 8.089±0.0025 4.028±0.001 295.4
sample 5 8.019±0.003 4.025±0.0005 296.6
sample 6 8.045±0.0025 4.002±0.0005 295.1

Resonator 24.0036±0.001 11.899±0.0035 296.5, 295.3

Table 4.1: Dimensions of the samples and the resonator and measured temperatures.
The dimension values are the mean value plus/minus one standard deviation.

4.2 Results of square root rule test and experiments in
nitrogen and vacuum at room temperature

The results of surface resistance measured in air, nitrogen and vacuum are shown
in figure 4.1 and we can see the results of them are all close enough to each other, which
indicates that the air and the water vapor have little effect on the measurement of Rs.
A power fit (of form af b) is made (purple line) with the help of Matlab’s curve fitting
tool giving Rs ∝ f0.5216, about 4 percent larger than 0.5. In addition, other two square
root rule (SRR) lines are plotted, scaled at 42 GHz and 29 GHz respectively. From the
plot, we use one half of the maximum of difference between the green line and the blue
line as the uncertainty σRs , which is about 3 mΩ.
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Figure 4.1: surface resistance in air , nitrogen and vacuum at room temperature

Actually, square root rule is based on the following definition:

Rs =

√
πfµ0

σ
(4.1)

where σ is electrical conductivity and is regarded as a constant, However, it can also
depend on the frequency, which may explain a part of 4% relative error in the power fit.

In addition, during the experiment, we find the resonance frequency of the TE01

mode is changing when the pressure goes down, which is recorded in figure 4.2, though
the change is only 6 MHz. The temperature recorded at 103 hPa is 300 K and goes
down to 299.66 K at 10−4 hPa. Thus this 6 MHz difference can be caused by the change
of temperature.
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Figure 4.2: Plot of resonance frequency versus pressure at room temperature

4.3 Perpendicular components of dielectric properties at
295-297 K

We use the square root rule scaled at 19.73GHz, at which the Rs is 43.8 mΩ. Thus
over the whole frequency span we have

Rs = 43.8mΩ×
√

f(GHz)

19.73
(4.2)

Figure 4.3 and figure 4.4 shows ϵ⊥ as a function of frequency for 12 mm and 8 mm
samples respectively. Combined data is shown later in figure 4.8. Detailed data like G,
P⊥
samp and percentage of data removed mentioned in section 3.1 are shown from table

4.2 to table 4.7. We only collect percentage of data removed (PDR) for only one sample
in each sample group. One thing that can be immediately noticed for ϵ⊥ from figures is
that both groups of samples have a peak, though at different frequencies. The range of
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ϵ⊥ axis is 0.12, which means that the fluctuation is within 1.3%, so the dependence on
frequency is not so strong. In each group, the values of the three samples at the same
frequency are close. In addition, if we ignore the peak, ϵ⊥ is almost constant between
10 GHz and 40 GHz for 12 mm samples. For 8 mm groups, it climbs gently up to 42
GHz.

In section 2.2 we have mentioned that the resonant frequency is dependent on both
ϵ⊥ and ϵ∥ and we need to choose those modes with negligible Ez so that the dependence
on ϵ∥ can be safely neglected. According to equation (2.28), (2.29), (2.34) and (2.35),
this means choosing modes with negligible P

∥
samp compared with P⊥

samp. From table
4.2 to table 4.7 we can see that all P ∥

samp are small enough compared with P⊥
samp, so

these modes are good for the perpendicular component measurement. The modes with
m=0 are TE modes so there is no Ez component, which leads to P

∥
samp=0. Most of

Psamp(= P
∥
samp + P⊥

samp) are above 0.7 so the field is mostly confined in the samples.
For modes of 23.8 GHz and 27.6 GHz of 12 mm samples and at 21 GHz of 8 mm samples,
the filling factor Psamp is low compared to other resonances and these points deviate
from the overall trend, which therefore indicates the effect of the permittivity is less and
the apparent deviation is most likely caused by some other parameters. If we ignore
these points, ϵ⊥ is almost constant in this frequency range. In addition, most of PDR
are small while that of 33.05 GHz mode of sample 3 is almost one half.

Figure 4.3: perpendicular components of dielectric constant versus frequency for the
12 mm samples at room temperature
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Figure 4.4: perpendicular components of dielectric constant versus frequency for the 8
mm samples at room temperature

To see how well the Lorentzian curves look, we use our own Lorentzian fit code
in Matlab. We have fitted data of 10.3 GHz mode (high P⊥

samp and low PDR), 27.5
GHz and 20.9 GHz modes (low P⊥

samp and low PDR) and 33 GHz (high P⊥
samp and high

PDR). Results are shown in figure 4.5. The χ2 is defined as

χ2 =

∑
i
(y′i − yi)

2∑
i
y2i

(4.3)

Where y′i is each fitted value and yi is each measured value. The smaller the χ2 is, the
better the Lorentzian fit is. We see that 10.3 GHz mode has the smallest χ2. 27.5 and
33 GHz modes have a much larger χ2. So we can see that the Lorentzian fit sometimes
is not so good for modes with high PDR or low P⊥

samp.
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Figure 4.5: Lorentzian fits for 10, 27, 24 and 33 GHz modes

Figure 4.6 and figure 4.7 show tanδ⊥ results for 12 mm and 8 mm samples re-
spectively. Combined data is shown later in figure 4.9. Generally speaking, for both
groups of samples, it increases gradually from 1 × 10−5 at 10 GHz to about 7 × 10−5

at 42 GHz. In each group, the values of the three samples are still close at the same
frequency. From table 4.2 to table 4.7 we see that most G factors are a few thousands.
If we calculate RS/G, most of them are about 10−5, comparable with tanδ⊥, so they
can not be neglected. Thus for these modes, the proper values of surface resistance are
always important. We should also use modes with negligible P

∥
samp because we obtained

equation (3.18) by neglecting P
∥
samptanδ∥ term in (3.17). We can see from table 4.2 to

table 4.7 that all of these modes meet the demand.
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Figure 4.6: perpendicular components of loss tangent versus frequency for the 12 mm
samples at room temperature

Figure 4.7: perpendicular components of loss tangent versus frequency for the 8 mm
samples at room temperature.
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f(GHz) Q ϵ⊥ tanδ⊥(×10−5) G P⊥
samp P∥

samp m PDR
10.3234 31512.7 9.372 1.02 1460 0.887 0 0 0
13.7310 26519.9 9.367 2.15 1886 0.817 0.001 1 0.55
20.7840 28356.1 9.358 2.65 3473 0.814 0.001 1 2.49
23.7949 20381.8 9.337 3.24 1695 0.601 0 0 0
27.6018 18835.1 9.405 2.54 1367 0.556 0 0 11.30
33.0507 20689.0 9.361 4.93 6218 0.754 0.037 5 48.97
36.8985 18583.7 9.380 5.11 4661 0.786 0.008 3 6.77
40.6418 15538.0 9.378 6.40 7717 0.868 0.004 2 18.76

Table 4.2: Detailed data of sample 3.

f(GHz) Q ϵ⊥ tanδ⊥(×10−5) G P⊥
samp P∥

samp m
10.3269 31159.8 9.373 1.06 1443 0.887 0 0
13.7339 26865.1 9.371 2.09 1886 0.811 0.001 1
20.7857 28386.8 9.364 2.65 3471 0.814 0.001 1
23.7918 20115.2 9.347 3.34 1694 0.600 0 0
27.5943 18764.7 9.417 2.57 1366 0.555 0 0
33.0573 20714.4 9.365 4.92 6249 0.754 0.037 5
36.8931 17124.3 9.390 5.69 4661 0.786 0.008 3
40.6556 18137.3 9.377 5.34 7687 0.878 0.004 2

Table 4.3: Detailed data of sample 2.

f(GHz) Q ϵ⊥ tanδ⊥(×10−5) G P⊥
samp P∥

samp m
10.3358 30861.3 9.366 1.10 1443 0.887 0 0
13.7438 26556.9 9.362 2.14 1886 0.811 0.001 1
20.7963 28706.5 9.356 2.60 3464 0.813 0.001 1
23.7941 20401.8 9.347 3.23 1693 0.600 0 0
27.6153 18351.7 9.394 2.81 1372 0.557 0 0
36.9027 18477.9 9.383 5.15 4670 0.796 0.008 3
40.6701 15189.7 9.371 6.56 7598 0.877 0.005 2

Table 4.4: Detailed data of sample 1.
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f(GHz) Q ϵ⊥ tanδ⊥(×10−5) G P⊥
samp P∥

samp m PDR
12.0941 33955.0 9.364 1.54 2194 0.857 0 0 0
20.9781 20777.9 9.412 1.82 1153 0.432 0 0 0
24.8808 20732.9 9.369 3.01 1719 0.612 0 0 0
29.6649 25692.5 9.375 4.24 29232 0.833 0.046 4 2.74
34.0416 23225.3 9.382 3.98 4325 0.737 0 0 0
42.0940 18022.1 9.390 5.83 5422 0.721 0.023 4 13.33

Table 4.5: Detailed data of sample 4.

f(GHz) Q ϵ⊥ tanδ⊥(×10−5) G P⊥
samp P∥

samp m
12.1634 35287.2 9.362 1.42 2219 0.855 0 0
20.0287 20148.1 9.418 1.91 1113 0.413 0 0
24.9723 21684.8 9.362 2.84 1814 0.630 0 0
29.8855 29202.4 9.377 3.68 28710 0.832 0.046 4
34.2103 21376.9 9.382 4.46 4002 0.715 0 0
42.2923 15571.2 9.389 7.00 5414 0.720 0.023 4

Table 4.6: Detailed data of sample 5.

f(GHz) Q ϵ⊥ tanδ⊥(×10−5) G P⊥
samp P∥

samp m
12.1485 35272.5 9.369 1.42 2208 0.855 0 0
20.0150 20504.7 9.421 1.78 1125 0.419 0 0
24.9434 21373.4 9.369 3.21 1781 0.624 0 0
29.8166 29752.1 9.383 3.61 29209 0.836 0.043 4
34.1593 21820.9 9.387 4.34 4136 0.724 0 0
42.2645 18865.9 9.396 5.49 5325 0.721 0.018 4

Table 4.7: Detailed data of sample 6.

Detailed information about the error bars is presented from table 4.8 to table 4.13.
We calculate these errors with equation (3.19). For ϵ⊥, (3.19) should be expanded as:

σϵ⊥ = [(
∂ϵ⊥
∂Dres

σDres)
2 + (

∂ϵ⊥
∂Hres

σHres)
2 + (

∂ϵ⊥
∂Dsamp

σDsamp)
2

+(
∂ϵ⊥

∂Hsamp
σHsamp)

2 + (
∂ϵ⊥
∂f

σf )
2]

1
2

(4.4)
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Where σHres and σDRes
are one standard deviation of the height and the diameter of

the resonator and σHsamp and σDsamp are one standard deviation of the height and the
diameter of the sample. These four values have been presented in table 4.1. σf is the
uncertainty of the resonant frequency. We measure ten times for each resonant mode to
get 10 values of resonant frequency f and again use (3.20) and (3.21) to calculate σf .
We can also get the uncertainty of the unloaded quality factor σQ in this way, which
we need in the calculation for the σtanδ⊥ . In addition, after each measurement, we take
out the sample, put it in and center it again to start the next measurement. Therefore
besides the systematic error, σf and σQ are also caused by the potential deviation of
the sample from the center. Finally, all partial derivatives in (4.4) can be obtained in
COMSOL as already mentioned in section 3.3. For σtanδ⊥ , we use:

σtanδ⊥ =

√
(
∂tanδ⊥
∂Q

σQ)2 + (
∂tanδ⊥
∂Rs

σRs)
2 (4.5)

The partial derivatives can be calculated using equations (3.22) and (3.23). The uncer-
tainty of surface resistance σRs is obtained as 3 mΩ as explained in section 4.2. Since
σf , σQ and partial derivatives are the same, so these values are not presented in all of
the tables. The largest error of ϵ⊥ is 0.0071,about 0.076% of the corresponding mea-
sured value. For most of modes, the error in ϵ⊥ is mainly caused by the uncertainty of
dimensions of the sample. For 8 mm group, the effect of uncertainty of the diameter is
quite dominant since 8 mm samples have larger uncertainties in diameter compared to
12 mm ones. When ∂ϵ⊥/∂Dsamp is larger, the resonance frequencies are more sensitive
to the diameter. The uncertainty in f and dimensions of the resonator generally have a
smaller effect on final results. The relative errors in tanδ⊥ are larger. For modes with
low G (<3000), the uncertainty is mainly caused by Rs otherwise the uncertainty in Q
contributes to σtanδ⊥ . We see a large error bar at 21 GHz caused by the very low G
(only 1100). Additionally, dimensions of resonator and the samples and ϵ⊥ also add to
the uncertainty to tanδ⊥ but they can be safely neglected compared with Q and Rs.
Finally, the coupling coefficients also has an impact on the resonant frequency. We
always control our S11,0 and S22,0 below 0.3 dB. In this range, we have seen how much
the resonant frequency and the quality factor change for the 10 and 21 GHz modes, one
with high P⊥

samp and the other with low P⊥
samp. We find that changes for f for both

modes are less than 0.1 MHz and for Q are about 200. Thus an assumption is made
that we can safely neglect these effects.
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f(GHz) σϵ⊥(10
−3) σtanδ⊥ σHres | ∂ϵ

∂Hres
| σDres | ∂ϵ

∂Dres
| σHsamp | ∂ϵ

∂Hsamp
| σDsamp | ∂ϵ

∂Dsamp
| σf | ∂ϵ

∂f(GHz) | σf (MHz) σQ

10.3234 2.55 0.25×10−5 0.60×10−3 0.07×10−3 1.93×10−3 1.37×10−3 1.03×10−3 0.37 858
13.7310 2.72 0.26×10−5 0.45×10−3 0.11×10−3 1.66×10−3 1.80×10−3 0.84×10−3 0.66 974
20.7840 2.48 0.13×10−5 0.41×10−3 0.13×10−3 1.13×10−3 1.88×10−3 0.56×10−3 0.96 485
23.7949 3.68 0.31×10−5 1.54×10−3 0.50×10−3 0.92×10−3 1.41×10−3 0.76×10−3 1.84 232
27.6018 4.29 0.40×10−5 2.46×10−3 0.81×10−3 0.58×10−3 0.70×10−3 0.62×10−3 2.59 169
33.0507 2.79 0.35×10−5 0.42×10−3 0.25×10−3 0.65×10−3 1.91×10−3 0.33×10−3 5.30 1400
36.8985 4.02 0.52×10−5 0.13×10−3 0.10×10−3 1.47×10−3 2.22×10−3 0.38×10−3 1.12 1276
40.6418 2.78 0.44×10−5 0.05×10−3 0.13×10−3 0.74×10−3 1.95×10−3 0.27×10−3 3.43 926

Table 4.8: Detailed data of errors of sample 3

f(GHz) σϵ⊥(10
−3) σtanδ⊥ σHsamp | ∂ϵ

∂Hsamp
| σDsamp | ∂ϵ

∂Dsamp
|

10.3269 1.64 0.25×10−5 0.97×10−3 0.91×10−3

13.7339 1.89 0.26×10−5 0.83×10−3 1.2×10−3

20.7857 1.80 0.13×10−5 0.57×10−3 1.26×10−3

23.7918 3.44 0.31×10−5 0.46×10−3 0.94×10−3

27.5943 4.23 0.40×10−5 0.29×10−3 0.47×10−3

33.0573 1.86 0.35×10−5 0.33×10−3 1.27×10−3

36.8931 3.72 0.61×10−5 0.74×10−3 1.48×10−3

40.6556 2.97 0.33×10−5 0.37×10−3 1.30×10−3

Table 4.9: Detailed data of errors of sample 2

f(GHz) σϵ⊥(10
−3) σtanδ⊥ σHsamp | ∂ϵ

∂Hsamp
| σDsamp | ∂ϵ

∂Dsamp
|

10.3358 3.19 0.26×10−5 2.89×10−3 0.91×10−3

13.7438 3.01 0.26×10−5 2.49×10−3 1.20×10−3

20.7963 2.41 0.13×10−5 1.70×10−3 1.26×10−3

23.7941 3.67 0.31×10−5 1.37×10−3 0.94×10−3

27.6153 4.31 0.40×10−5 0.87×10−3 0.47×10−3

36.9027 3.83 0.52×10−5 2.21×10−3 1.48×10−3

40.6701 3.15 0.46×10−5 1.11×10−3 1.30×10−3

Table 4.10: Detailed data of errors of sample 1
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f(GHz) σϵ⊥(10
−3) σtanδ⊥ σHres | ∂ϵ

∂Hres
| σDres | ∂ϵ

∂Dres
| σHsamp | ∂ϵ

∂Hsamp
| σDsamp | ∂ϵ

∂Dsamp
| σf | ∂ϵ

∂f(GHz) | σf (MHz) σQ

12.0941 4.46 0.17×10−5 0.65×10−3 0.05×10−3 1.08×10−3 4.26×10−3 0.46×10−3 0.25 621
20.9781 5.05 0.61×10−5 2.64×10−3 0.78×10−3 0.64×10−3 4.02×10−3 0.94×10−3 0.46 123.8
24.8808 4.18 0.30×10−5 1.17×10−3 0.54×10−3 0.49×10−3 3.59×10−3 1.53×10−3 1.25 270.4
29.6649 6.00 0.20×10−5 0.01×10−3 0.02×10−3 0.35×10−3 5.09×10−3 0.56×10−3 0.74 1143
34.0416 4.64 0.27×10−5 0.30×10−3 0.31×10−3 0.53×10−3 4.55×10−3 0.44×10−3 0.59 1003
42.0940 5.80 0.26×10−5 0.25×10−3 0.23×10−3 1.49×10−3 5.50×10−3 0.75×10−3 1.21 607

Table 4.11: Detailed data of sample 4.

f(GHz) σϵ⊥(10
−3) σtanδ⊥ σHsamp | ∂ϵ

∂Hsamp
| σDsamp | ∂ϵ

∂Dsamp
|

12.1634 5.20 0.17×10−5 0.54×10−3 5.10×10−3

21.0287 5.70 0.61×10−5 0.32×10−3 4.82×10−3

24.9723 4.80 0.30×10−5 0.25×10−3 4.31×10−3

29.8855 7.10 0.15×10−5 0.18×10−3 7.10×10−3

34.2103 5.50 0.31×10−5 0.27×10−3 5.50×10−3

42.2923 6.70 0.34×10−5 0.75×10−3 6.60×10−3

Table 4.12: Detailed data of errors of sample 5

f(GHz) σϵ⊥(10
−3) σtanδ⊥ σHsamp | ∂ϵ

∂Hsamp
| σDsamp | ∂ϵ

∂Dsamp
|

12.1485 4.36 0.17×10−5 0.54×10−3 4.26×10−3

21.0150 5.05 0.61×10−5 0.32×10−3 4.02×10−3

24.9434 4.16 0.30×10−5 0.25×10−3 3.59×10−3

29.8166 6.00 0.15×10−5 0.18×10−3 5.09×10−3

34.1593 4.61 0.30×10−5 0.27×10−3 4.55×10−3

42.2645 5.60 0.24×10−5 0.75×10−3 5.50×10−3

Table 4.13: Detailed data of errors of sample 6

Figure 4.8 shows a comparison of different results of ϵ⊥ measurement at room tem-
peratures from other works. Here we choose only sample 3 and sample 6 to present in this
and following several plots so that plots are simple and neat. Breeze[13], Krupka[15][10],
Egorov[20] and Kobayashi[21] give 9.39-9.40 around 10 GHz, which are different from
this work. Krupka also gives one around 22 GHz. Ebata[12] also provides three more
data distributed from 32 GHz to 44 GHz, whose trend is similar to those of sample 6,
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but the values are all smaller. In the work by Karpisz[22], ϵ⊥ is obtained as a constant
of 9.401 in the frequency range 20-50 GHz with an uncertainty of ±0.1. This error bar
value exceeds the range of our plot so it is not presented. In addition, we made a fit
of form af b + c for sample 6 after deleting points at 21 and 25 GHz, where we have
b = 1.531, c = 9.364 and a ≈ 10−4. The small value of ’a’ indicates the weak dependence
on frequency. Indeed, if we look at data from Breeze, Krupka, Egorov, Kobayashi and
Karpisz, we can see over the frequency span, no obvious dependence on frequency is
shown.

Figure 4.8: A comparison of our results of ϵ⊥ at room temperatures with that cited
from other literature

Figure 4.9 shows a comparison of different results tanδ⊥ measurement at room
temperatures from other works. In addition, a fit for both samples of form af b + c is
made and we get b=1.382, which is different from the power of 0.84 given by Hartnett
in frequency range from 7 GHz to 16 GHz. Breeze gives 5 × 10−6 at 10 GHz, which is
a little bit lower than that of this work. Krupka’s result fits the results of sample 6 of
this work. Finally, tanδ⊥ is measured to be around 3.5× 10−5 in the range 32-44 GHz
in Ebata’s work, which is also lower than those of this work. In the work by Karpisz,
tanδ⊥ is almost linearly dependent on the frequency as shown in figure 4.10. We can
learn that tanδ⊥ has an obvious increasing trend with the frequency. Our results, a
combination of results of cited literature in figure 4.9 and results from Karpisz in figure
4.10 can all be good evidences for it.
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Figure 4.9: A comparison of our results of tanδ⊥ at room temperature with that cited
from other literature

Figure 4.10: tanδ⊥ (in-plane 1) and tanδ∥ (out-of-plane) of the sapphire as a function
of frequency at room temperature[22].
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4.4 Results of mode identification

Figure 4.11 compares the changes in resonance frequencies of VNA and COMSOL
when shifting the sample by 0.5 mm away from the center. The x axis shows mode
names and for a certain mode there are two values. One is for VNA and another for
COMSOL. The two changes for almost all of the modes are close enough except the
17.35 GHz one, which has an opposite behaviour and thus the 17.35 GHz mode is not
adapted in the ϵ⊥ or tanδ⊥ plots and tables. This diagram proves that we do match
a proper mode in COMSOL with what we obtain with VNA. In case that changes for
some modes are not close when the sample is shifted 1 mm away from the center, some
tests on 1 mm shift have also been done for five modes and the results are shown in
figure A.1. In addition, PTFE removal experiment is also conducted for five modes and
the results are presented in figure A.2.

Figure 4.11: Comparison of difference in f when the sample is shifted 0.5 mm away
from the center for different modes

An example of choosing the proper mode is shown here: A resonance mode around
20.9 GHz has been found with VNA. The difference of frequencies ∆fvna with the
sample shifted by 0.5 mm and with the sample centered is 15.24 MHz. There are two
candidate modes found in COMSOL with m=0 and m=3 (figure 4.12). For m=0 mode,
the difference of frequencies ∆fcomsol with the sample shifted by 0.5 mm and with the
sample centered is -18 MHz while for m=3 mode, It is -36 MHz. Since ∆fcomsol of m=0
mode is more close to ∆fvna, m=0 one is chosen.
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Figure 4.12: Two modes of m=0 and m=3 found on COMSOL for one resonance mode
on VNA. The sample in the first column is centered while in the second column it is
shifted by 0.5 mm from the center

In addition, even though we find only one appropriate mode in COMSOL simula-
tion, it can also be suspicious because of its deviation from the overall trend and needs
to be tested. The deleted 17.35 GHz mode is an example of this. Thus though there
are modes with only one correspondence in COMSOL, it is still meaningful to test it
with the mode identification method.

4.5 The results of cryogenic experiment

Figure 4.13 shows ϵ⊥ of sample 3 in the cryogenic experiment around 18 K together
with data from other two works. Detailed data are shown in table 4.14. Remember
we should use modes with high Psamp and negligible P

∥
samp so the data of sample 3

are divided into two parts: those with Psamp>0.7 and negligible P
∥
samp (blue) and the

others (black) with Psamp < 0.7 or non-negligible P
∥
samp, for which we give low credence.

The ϵ⊥ is lower at this temperature. It also has a decrease trend between 10 GHz and
21 GHz. After that there is a peak at 27.8 GHz. If we only look at blue ones, ϵ⊥ is
almost constant. The error bar at the end is caused by the lack of ability to identify
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modes on COMSOL. Around 32.7 GHz, two modes are found on VNA but only one
appropriate mode is found on COMSOL so we match those two on VNA with the same
one on COMSOL. They are close enough to each other so it looks like only one point
is there. Since in the cryogenic experiment it is not possible to do the sample shift or
remove the PTFE rod, mode identification test has not been done. The value at around
10 GHz is near to that in Breeze’s work. The difference is less than 0.01 while there
is a difference between this work and Krupka’s. Since at room temperature we see the
error bars are mostly caused by uncertainties of dimension and the ratio of dimensions
of both resonator and samples at 18 K to that at room temperature is very close to 1.
Together with that the uncertainties of dimensions are proportional to the dimension,
thus we use the same error bars here for modes which we also found in room temperature
experiment. For those newly discovered mode at 18 K, we give it the largest error bar
among those we have at room temperature as an approximation. We can learn from
the figure that if we only look at the blue points, ϵ⊥ still shows no obvious dependence
on frequency.

Figure 4.13: Perpendicular components of dielectric constant versus frequency of sam-
ple 3 at 18 K

Figure 4.14 shows the results of tanδ⊥ of sample 3 in the cryogenic experiment
around 18 K. The information about parameters in equation (3.18) at 18 K is provided
by E. Öz[19]. Detailed data are shown in table 4.14. The values of tanδ⊥ are generally
smaller but the pattern looks quite different here. There is not an increasing trend over
the entire frequency range. Most of the points have a value about 10−6. There is also
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a dramatic peak around 24 GHz. In work by Breeze[13], a value of tanδ⊥ at the same
temperature is given as 10−8 at 10 GHz while Krupka [10] gives 3.5×10−8 at 21.55 GHz.
Since at 18 K, it is impossible to take the sample out and put it back to do multiple
measurements as we do at room temperature, we only consider the uncertainty caused
by the surface resistance, which is assumed to be 3 mΩ as used at room temperature.
Then σtanδ⊥ is calculated by

σtanδ⊥ =

√
(
∂tanδ⊥
∂Rs

σRs)
2 (4.6)

A majority of P⊥
samp is larger than 0.7. For 32 and 35 and 39 GHz, P ∥

samp can not
be neglected so these modes should not be included, but they fit well in the plots and
anyway are kept there and given low credence. In addition, there are G factors more
than a hundred thousand or even a few millions, which are more reliable for getting
tanδ⊥ compared with those of a few thousands. We can see each of the last two modes
is matched with two modes found in COMSOL, which contributes dominantly to the
error bars of the 40.93 and 41.01 GHz modes.

Figure 4.14: Perpendicular components of loss tangent versus frequency of sample 3 in
cryogenic experiment
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f(GHz) Q ϵ⊥ tanδ⊥(×10−6) G P⊥
samp P∥

samp m
10.3978 71481.5 9.241 3.49 1439 0.886 0 0
13.8229 50480.5 9.237 12.3 1904 0.812 0.001 1
20.9239 69157.8 9.228 9.42 3410 0.810 7e-4 1
23.9456 38025.1 9.192 18.9 1660 0.592 0 0
24.3199 23620.2 9.244 42.1 1998 0.720 6e-4 2
27.7786 49376.5 9.261 2.48 1393 0.563 0 0
31.0445 396995 9.253 2.61 729747 0.947 0.003 7
32.7444 517748 9.247 1.80 134051 0.267 0.685 6
32.7448 363874 9.246 2.66 134166 0.267 0.685 6
35.4438 829682 9.249 1.21 810499 0.246 0.719 7
37.1464 71824.2 9.252 9.43 4766 0.797 0.008 3
39.0020 255919 9.224 3.43 36013 0.669 0.219 7
40.9300 88669.8 9.281 11.7 4108088 0.891 0.070 8
40.9300 88669.8 9.231 10.8 18967 0.809 0.075 2
41.0103 66934.1 9.241 15.5 4234504 0.891 0.069 8
41.0103 66934.1 9.205 11.9 7213 0.856 0.009 5

Table 4.14: Detailed data of sample 3 in cryogenic experiment.
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5 Further Discussions

In this chapter, Relevant theories about dielectric properties are discussed from
literature. In addition, we evaluate the loss tangent for modes with high geometric factor
in order to mitigate the uncertainty caused by surface resistance. We also evaluate ϵ⊥

for modes with high P⊥
samp.

5.1 Theoretical models for dielectric properties

Figure 5.1 shows a rough relation between real and imaginary parts of dielectric
constant and the frequency. We see the main contribution to the permittivity changes
with the frequency. At frequencies around and below microwave range, the dipolar po-
larization is dominant, which is caused by the same orientation of molecules with dipoles.
As the frequency goes up, the Electromagnetic field alternates faster and there is not
enough time for those molecules to be arranged in the same direction so contribution due
to this goes down. Around 1012 Hz, the atom or ionic polarization is prominent, which
result from the displacement of ions. Then around 1015 Hz, the electronic polarization
becomes important.
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Figure 5.1: Dielectric dispersion for various types of polarization[23]

There is a simple model for dielectric properties, in which the crystal is composed
of classical resonators of different natural frequencies with damping[24]:

ϵ(ω) = ϵ∞ +
N∑
j

Sjωj

ω2
j − ω2 − iωΓj

(5.1)

The first term stands for the dielectric constant when frequency goes to infinity, which is
determined by electronic polarizability and the second term represents the lattice as N
classical harmonic oscillators with eigenfrequency ωj , damping factor Γj and oscillator
strength Sj .

If the microwave frequency ω is much smaller than natural frequencies of those
oscillators, then ϵr and tanδ can be written as[25]:

ϵr =
1

ϵ0
(ϵ∞ +

N∑
j=1

Sj) (5.2)

tanδ =
ω

ϵ0ϵr

N∑
j=1

SjΓj

ω2
j

(5.3)

which shows that dielectric constant has no strong dependence on frequency and loss
tangent is linearly dependent on frequency.
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In both works by Braginsky [26] and Zuccaro[27], the dielectric loss is composed
of two parts. One is the intrinsic loss caused by the interaction between an electro-
magnetic field and the phonon system of the dielectric. The other is the loss caused by
imperfections of the dielectric. The fundamental loss tangent formulas for hexagonal
and cubic (rhombohedric) crystals are given by Gurevich respectively as[28]

tanδ ≈ η
ω(kT )5

ϵρv5h̄2(kTD)2
(5.4)

tanδ ≈ η
ω2(kT )4

ϵρv5h̄(kTD)2
(5.5)

where k is Boltzmann constant, ϵ is the permittivity, h̄ is the reduced Planck constant,
ρ is the density and v the mean sound speed. η is a dimensionless parameter in the
range to 10-100. These two equations are effective when temperature is much smaller
than the Debye temperature (TD). For sapphire, TD=1047 K[29].

Another way to describe the microwave absorption due to the interaction be-
tween phonons and electromagnetic waves is the model developed by Sparks, King and
Mills[30], which is based on lifetime broadened two phonon difference processes. In this
model, loss tangent is given by:

tanδ ∝ ϕ2
3

hf

kBT
n(ν1)[n(ν1) + 1][tan−1(νTO/γ)− tan−1(∆ν/γ)] (5.6)

where ϕ3 is the third derivative of the lattice potential, νTO is the frequency of the
fundamental reststrahlen mode, ν1 is the frequency of the phonon, ∆ν is the change of
the frequency of the phonon after the interaction and n is the Bose function:

n(ν1) =
1

e( hν1
kBT )− 1

(5.7)

where kB is Boltzmann constant. According to equation (5.6), the loss tangent caused
by interaction between electromagnetic wave and phonons is linearly dependent on the
frequency.

For the loss caused by defect dipole relaxations, Zuccaro[27] uses the Debye formula

ϵ′ − jϵ′′ = ϵ∞ +
ϵs − ϵ∞
1 + ω2τ2

− j
(ϵs − ϵ∞)ωτ

1 + ω2τ2
(5.8)

where ϵs is the permittivity when the frequency of electromagnetic wave is 0 and
ϵ∞ is the permittivity when the frequency goes to infinity. τ is the dipole relaxation
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time, which is the time dipoles need to return to the equilibrium. If the defect dipoles
have different relaxation time, generally we have[31]

ϵ′ − jϵ′′ = ϵ∞ + (ϵs − ϵ∞)

∞∫
s

D(τ)(1− jωτ)

1 + ω2τ2
dτ (5.9)

where

∞∫
0

D(τ)dτ = 1 (5.10)

The Cole-Cole distribution is one of the most common one and reduces (5.9) to

ϵ′ − jϵ′′ = ϵ∞ +
ϵ0 − ϵ∞

1 + (jωτ)1−m
(5.11)

where 0⩽m⩽1. Then the loss tangent caused by defect dipoles is:

tanδ =
θ(ωτ)1−msin[(1−m)pi2 ]

1 + θ + (2 + θ)(ωτ)1−mcos[(1−m)pi2 ] + (ωτ)2(1−m)
(5.12)

where θ=(ϵs − ϵ∞)/ϵ∞.

5.2 Further discussions on results

We notice that the error bars of tanδ⊥ are proportional to 1
G . Those with a small

G have a much larger error bar compared with those with a much larger G. If we want
to reduce the effect of Rs, choosing modes with a large G is a sensible way.

We choose modes with G bigger than 3000 and make new plots at room temper-
ature. Figure 5.2 shows the results of modes with G bigger than 3000 of both sample
3 and sample 6, in which a fit of form af b + c is made and b is equal to 1.112. Thus
the fit is close to a linear dependence on frequency as shown in equation (5.3), (5.4)
and (5.6). Relative parameters in equation (5.4) are given for sapphire at 300 K[29]:
ρ=4000 kg/m3, v=6000 m/s, η = 100 and TD=1047 K. With these values, a plot of
equation (5.4) is made. In addition, Braginsky shows that in temperature range 60-150
K, tanδ is linearly dependent on fβ, where β ≈ 1.7, contrary to equation (5.4) and
(5.5). The reason for it is that sapphire is not in the hexagonal symmetry class and its
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lattice is of rhombohedric symmetry. However, its acoustic spectrum is similar to that
of a hexagonal crystal. Therefore β is obtained between 1 and 2. Our fit with b = 1.112

and consequent difference from the line of equation (5.4) may also be explained by this
argument.

Figure 5.2: tanδ⊥ at room temperature for modes with G bigger than 3000 of both
sample 3 and sample 6

Figure 5.3 presents tanδ⊥ of those with G>3000 of sample 3 at 18 K. Since the P ∥
samp

of the 32.74, 35.44 and 39 GHz can not be negligible, we should put less credence in these
data. We can see that tanδ⊥ first gently goes down and then increases. Consequently,
there is a potential minimum around 35 GHz.

Figure 5.3: tanδ⊥ for sample 3 at 18 K for modes with G larger than 3000
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Figure 5.4 shows the loss tangent of 3 different sapphire samples in Braginsky’s
work. We notice that there is a two-magnitude-order difference in loss tangent at cryo-
genic temperatures. Above 50 K, these values are close to the model proposed by
Gurevich (equation (5.4) and (5.5)). Below 50 K, values of tanδ are greatly caused
by crystal defects. Now look back at our results. The tanδ⊥ we measured at 18 K is
2-magnitude-order larger than that in Breeze’s and Krupka’s works, one of the reasons
can be the imperfections in our samples. Before the minimum in figure 5.3, the loss
tangent is mainly caused by defects described by Debye model, which gives a decreasing
trend. With the increase in frequency, the loss due to defects is less important and
the loss due to the interaction between phonons and electromagnetic waves contributes
greatly, which gives the increasing trend. In work by Zuccarro, the decrease in loss
tangent caused by defects with the increase in frequency is also observed for LaAlO3 at
cryogenic temperatures.
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Figure 5.4: Loss tangent of 3 different sapphire samples versus temperature at 9GHz[26]
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For ϵ⊥ at both room temperature and 18 K, we learn that we should use modes
with negligible P

∥
samp and large Psamp, so extra plots are made excluding those satisfying

these conditions.

Figure 5.5 shows ϵ⊥ of modes with Psamp > 0.7 and negligible P
∥
samp for both

sample 3 and sample 6 at room temperature. As we mentioned ϵ⊥ is almost constant
so constant lines are fitted in. The largest relative deviation of sample 3 is 0.12% and
for sample 6 it is %0.16.

Figure 5.5: ϵ⊥ for modes with Psamp>0.7 and negligible P
∥
samp of sample 3 (left) and

sample 6 (right)

Figure 5.6 shows modes with Psamp > 0.7 and negligible P
∥
samp for sample 3 data

at 18 K. Again a constant fit is made with ϵ⊥ = 9.241. The largest relative deviation
is about %0.14. Note that the P⊥

samp of 32.7 and 35.4 GHz modes are not negligible, so
we have less confidence in the corresponding data.
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Figure 5.6: ϵ⊥ for modes of sample 3 with P⊥
samp > 0.7 and negligible P

∥
samp at 18 K

The nearly constant behaviour is predicted by equation (5.2). The Debye mode can-
not explain our results since it predicts that ϵ decreases with frequency. The relaxation
time is given as[27]

τ = τ0e
W

kBT (5.13)

where W is the activation energy. We can see that a lower temperature gives a larger
relaxation time. Then from equation (5.8), we see the increase in τ leads to the decline
in dielectric constant.

Finally, We know from our results and other ones from literature that the measured
dielectric properties are sample dependent. The reason is that samples are different in
the defect structure, for instance the concentration of impurity ions, the disorientation
of crystal growth and dislocations. In the work by Braginsky[26], a block with a disori-
entation angle about 1◦was found in the sample corresponding to curve 1 in figure 5.4.
In the work by Belyaev[29], the level of the perfection of sapphire crystals is determined
by the growth rate.
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6 Summary and Conclusions

We have studied perpendicular components of dielectric constant (ϵ⊥) and loss
tangent (tanδ⊥) of sapphire, which is the one of the potential candidate materials for
the MADMAX experiment, over the range from 10 GHz to 40 GHz at 295-297 K and at
18 K in a dry cryostat. It is also a relatively rare study over this large frequency range.
The fluctuation of ϵ⊥ at both temperatures over the frequency range is less than 1% so
ϵ⊥ is almost a constant. At room temperature, tanδ⊥ is almost linearly dependent on
frequency which is consistent with Sparks-King-Mill model and explainable by Gurevich
model. At 18 K, ϵ⊥ is lower and tanδ⊥ is around 10−6 and decided by both phonon
electromagnetic wave interaction and defect dipole relaxation processes. In addition, the
results seem to be sample dependent. The impurities in samples, the speed of growing
crystals and detailed structure of the lattice should be responsible for this. Lastly we
see that sapphire meets the requirement to be used in MADMAX dielectric haloscope,
indeed with low dielectric loss and high dielectric constant.
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A More Mode Identification Results

Figure A.1 and figure A.2 show the results of 1 mm shifted way and PTFE removal
way respectively. There are 5 tested modes in each diagram.

Figure A.1: Comparison of difference in f when the sample is shifted 1 mm away from
the center for different modes
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Figure A.2: Comparison of difference in f when the PTFE rod is removed for different
modes
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